Two wheeler accidents

Project two wheeler accidents

Politieacademie

Objective project two-wheeler accidents:

* The objective of the research was to find out if the braking behaviour of the motorcyclist before a collision could be analyzed

Phases project

- * Investigation and study of existing literature
- * Tests
 - Investigation of the marks and their direction
 - Pre-crash motion of the two-wheeler and the rider related to the marks
- * Field investigation

Brake tests

Brake tests

Which wheel locked?

Locking frontwheel

Marks on the underside of the boots Politicacademie

Did the rider apply the front brake? Politicacademie

Did the rider apply the front brake?

Did the rider apply the front brake?

Brake test and comparing the marks Politicacademie

Field investigation

Depth and direction

And deformation of the car

Drag tests

Brake test on the scene

What can we learn from accidents?

Accident Exploration Model Ac

What's risk?

Politieacademie

Risk = chance x result

Subjective risk

Politieacademie

Subjective risk

Risk perception

Risk perception??

Focus rider training:

byal Dutch motorcycle association

- * Risk perception
- ★ In experienced rider training at circuit: (VRO 1, 2 and 3)
- Focus on limitations motorcycle and the rider (humanfactor) by doing al kind of exercises

Focus rider training:

Politieacademie

byal Dutch motorcycle association

- * Risk perception
- In experienced rider training on public roads (VRO R)
- ★ Is there any risk?
- * Is it necesary to react on it?
- ★ What kind of reaction?
- ★ Execution ———>To prevent a collision avoidance manoeuvre

Risky situation

Risky situation

Risky situation

Result of MAIDS

Politieacademie

* MAIDS about speed:

Travelling and impact speeds for all PTW categories were found to be quite low, most often below 50 km/h. There were relatively few cases in which excess speed was an issue related to accident causation.

- * Remark: The problem in many cases is to find the speed prior to the first (brake)marks!
- ★ Analyse data from on board data systems
- ★ Example accident with video

Politieacademie Politieacademie Politieacademie Politieacademie Politieacademie

Effect of speed

$$\begin{array}{ccc} Mc & v \ 50 \ km/h \\ & a \ 8 \ m/s^2 \\ & t_{reaction} \ 1 \ s \end{array}$$

$$S_{stop} = v \times t + \left(\frac{v^2}{2a}\right)$$

Effect of speed

$$\begin{array}{cc} Mc & v~60~km/h\\ & a~8~m/s^2\\ & t_{reaction}~1~s \end{array}$$

$$S_{stop} = v \times t + \left(\frac{v^2}{2a}\right)$$

Effect higher crash speed

Effect higher crash speed

Education OV Politieacademie

* Investigation Gesamtverband der Deutschen Versicherungswirtschaft e.V. (GDV)

- 910 accidants (A)
- 610 accidents between motorcycle and car (B)
- In 65% rider of motorcycle brakes prior to crash
- In 20% the rider came to a fall
- In 93% with ABS there would be no accident (B)
- 40% in single accidents
- Each year in this accidents and in single accidents
 10% less of deaths and injuries (A)
- 70 deaths and 3000 injuries

Only operate the foot pedal Politieacademie

Brake test

60 m brakemark / crashspeed 50 km/h / a 4 m/s^2

$$v_o = \sqrt{2as + v^2}$$
$$v_o = 93 \, km/h$$

Based on a $t_{reaction}$ of 1 s, the first point of perception is at a distance of 60 + 26 = 86 m prior to the crash point

At which distance from the car the motorcycle would have stopped if the motorcyclist only operate the foot pedal and the motorcycle was equipped with a dual combined braking system?

Result brake test

$$s_{stop} = v \times t + \left(\frac{v^2}{2a}\right)$$

$$s_{stop} \approx 61m$$

This means that the motorcycle 25 m prior to the crash point would have come to a stop. At this point the accident Motorcycle still had a speed of 71 km/h.

ABS / Combined BS

- * Realising a maximum deceleration even under critical conditions
- * The maximum deceleration in a short time
- **★** Capacity for other aspects
- * Less stress
- * No fall due to overbraking
- **★** Decreasing the crash speed / less severity
- With combined braking systems also high deceleration if only the footpedal is used

Thank you for youre attention www.politieacademie.nl